Картотека книг » Поиск по коду » Книги с ISBN13 9781118650707
На странице указаны адреса интернет-магазинов и библиотек (обычных) в которых есть книга с данным кодом.
Книга ISBN13 9781118650707 - Spectral Clustering and Biclustering. Learning Large Graphs and Contingency Tables (Marianna Bolla) в магазинах, библиотеках и электронных библиотеках с он-лайн чтением
Информация о местонахождении книг с указанным кодом ISBN. (Найти нужный код ISBN10 или ISBN13 можно в техническом каталоге кодов.)На странице указаны адреса интернет-магазинов и библиотек (обычных) в которых есть книга с данным кодом.
Где купить эту книгу?
Интернет-магазиныНазвание: Spectral Clustering and Biclustering. Learning Large Graphs and Contingency Tables
Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, multivariate statistics, or applied graph theory; but by skipping the proofs, the algorithms can also be used by specialists who just want to retrieve information from their data when analysing communication, social, or biological networks. Spectral Clustering and Biclustering: Provides a unified treatment for edge-weighted graphs and contingency tables via methods of multivariate statistical analysis (factoring, clustering, and biclustering). Uses spectral embedding and relaxation to estimate multiway cuts of edge-weighted graphs and bicuts of contingency tables. Goes beyond the expanders by describing the structure of dense graphs with a small spectral gap via the structural eigenvalues and eigen-subspaces of the normalized modularity matrix. Treats graphs like statistical data by combining methods of graph theory and statistics. Establishes a common outline structure for the contents of each algorithm, applicable to networks and microarrays, with unified notions and principles.
Авторы: Marianna Bolla
Издательство: John Wiley & Sons Limited
Год: 0
Местонахождение: LitRes.ru
ISBN: 9781118650707
Поиск по сайту
Новости
10 января 2015 года: Запуск базы ISBN10 и ISBN13Запущена база данных ISBN и технический каталог кодов.
2015 - books.kartoteka.net
e-mail: books@kartoteka.net
e-mail: books@kartoteka.net